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SINGULARITIES OF THE INTERACTION OF A VIBRATING STAMP WITH AN 
INHOMOGENEOUS HEAVY BASE* 

V.V. KALINCHUK, I.V. LYSENKO and I.B. POLYAKOVA 

A method is developed for studying the fundamental characteristics 
of the wave process on the surface of, an initally isotropic prestressed 
elastic half-space caused by an oscillating rigid stamp. The following 
is taken as the model of the inhomogeneous medium: an elastic layer 
e< 5~ d h, xl,+ < m whose mechanical characteristics as well as the 
initial stresses are arbitrary, fairly smooth functions of the 
coordinate z1 in the general case, lies on the surface of a homogeneous 
half-space zQ > h, zl, 2) < 00 (z%, z,, zg are a rectangular Cartesian coordinate 
system). The linearized boundary value problem of the dynamic theory of 
elasticity of vibrations with frequency o for a rigid stamp on the 
surface of an inhomogeneous medium reduces to an integral equation or to 

*Prik~.Uatem.Mekhan.,Vo1.53,2,301-308,1989 
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a system of integral equations of the first kind whose integral 
operator kernel is constructed numerically. Approximation of the 
kernel of the integral operator by a special kind of function enables 
an approximate solution of the integral equation to be constructed by 
the factorization method 11, 21. On the basis of the latter, an 
effective investigation of the influence of the parameters 
characterising the inhomo~~neity of the medium and the initial state of 
stress on the wave process both under (stress wave) and outside the 
stamp is possible. 

The construction of a general linearized theory and the 
regularities of elastic wave propagation in bodies with homogeneous 
initial stresses are considered in /3/, where a fairly complete survey 
is also given of the literature on this question. A systematic 
exposition of the theory of wave propagation in elastic media with an 
inhomogeneous initial state was first given in /4/. 

The contact problem of the vibrations of an inhomogeneous 
half-space subjected to a rigid stamp oscillating on its surface was 
examined in /5, 61 without taking the initial stresses into account. A 
method of investigating the regularities of electric-wave excitation in 
semibounded bodies (layers and cylinders) with varying properties and 
magnitude of the initial stresses was proposed in /7/ on the basis of 
the solution of the contact problem. A method of investigating the 
singularities of elastic wave propagation in aninhomogeneous initially 
strained half-space caused by an oscillating load distributed in a 
certain domain on the surface of the medium has been developed*. 
("Kalinchuk V.V., Lysenko 1-V. and Polyakova I.B., Singularities of 
elastic wave excitation and propagation in an inhomogeneous heavy 
half-space. Deposited Manuscript, December 10, 1986, 8877-B86, VINITI, 

Rostov, 1986). 

l.The problem of the vibrations of a rigid stamp occupying a domain Cn in planform 
on the surface of an elastic inhomogeneous initially strained medium is described by the 
linearized equations of motion /8, 9/ 

V.flCi) = pC')u", i = 1, 2 (1.1) 

with the boundary conditions on the surface z3 = 0 

N. W = q(l), cc,, zp E St (f.2) 

and the displacement and stress continuity conditions on the interfacial surface of the 
medium x3 = h. 

The quantities with superscript 1 in (l.l), (1.2) and below refer to the layer, and 
those with superscript 2 refer to the half-space u(i) = {u,(i), uz(*), u,(i)), q(i) = {qr(U, 'II(0, qsW) are 
the displacement and stress vectors of the layer (i = 1) of the half-space (i = 2) 
respectively, p(fiis the material density,ana N is the vector normal to the surface.In the case 
under consideration N = (O,O, I} and W is a tensor of fourth rank that is represented 
in the form of the sum of a symmetric tensor p(i) and an antisymmetric tensor 'c'(i) /91. 

The tensor UC', is independent of the material properties and is represented in 
terms of the initial stress tensor T@) and the symmetric strain tensor e(i) and skew- 
symmetric strain tensor Q(i) /9/ 

c’(i) = _& (T(i) .e(“, _ ec’) .T”‘) - T”‘, Qti) (1.3) 

The tensor Pi) is independent of the initial stresses and in the case of small initial 
strains has the form (,W, p@) and Lame parameters, and E is the unit tensor) 

pCi)(eCO) = AC0 (xa) treii) .E + 2p(O (x8) et0 ($A) 

We shall later assume that the initial state of stress is determined by the initial 
stress tensor T(t) with the components 

Z$) GO;',", k,s = 1,2,3 (1.5) 

Here 6,, is the Kronecker delta, where CT%?' = const (k = 1, 2, & and 
Wl) _ (Ti.6 - u$ (53) 

are arbitrary fairly smooth functions of the coordinate x2. 
Taking (1.3)-(1.5) into account we represent the boundary value Problem (1.1) and (1.2) 

in the following way 
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(1.6) 

Let us recall that the coefficients okSci), bks@), A('), y('), o$F in (1.6) and (1.7) 

constant for i=2 and are arbitrary fairly smooth functions of the coordinate zg for 

i=l. 

2. Applying a two-dimensional Fourier transformation in the coordinates 51, % (a, B 
are transformation parameters) to the boundary value Problem (1.6), it can be reduced to the 
form /7/ 

Y(')' = MC') (a, p, zs)Y('), t = 1, 2 (2.1) 

B(l) (a, B, z&Y(r) = s(l) , x,=0 

I)'O'(a,& xJ.Y@) = 0, XQ = h 
(2.2) 

Here 

Y(") = t {iaVjk’, q3vik’, VP’, iau:“‘, ipup, Uik’], k=l,2 

Yco’=f (ial/'!", @Vf’, Vf', ia@, ipUp’, Up), iaVp', $V:“‘, Vf',iaU:2',if3U~a', via)} 

S(l) = f {ia& i&l Q ) m 3, V(j) = HP/d k k X3 

where ukci’, qk are transforms of the Fourier components of the displacement and stress 
vectors, respectively. The matrices MC') (a, p, x8) (i = 1,2) have the dimensions 6x6 and 

B(O) (a, B, 4 and B(l)(a, fi, x,), have the dimensions 12x6 and 6x3, respectively. The 
elements of the matrices M(r) (a, B, 4, B(l) (a, B, 4 and B(O) (a, 6. z9) are functions of the 
coordinate xQ that are determined by the nature of the change'in the elastic parameters 
and the initial stresses in the layer. The components of the matrix M@) a& independent 
of 53 and are determined by the elastic properties of the homogeneous half-space, and the 
form and intensity of the initial state of stress. 

The solution of system (2.1) for the half-space (i = 2) can be represented in the 
form 

Y f’ (a, p, x0) = e~+B(a,~)mik(a,~)e~u~'a'B'"', k = 1, 2,3 (2.3) 
i=1 

Here ui (Re ai> 0, IIQ oi < 0, i = 1, 2, 3) are solutions of the characteristic equation 

I I@’ (a, B) -aE(=O (2.4) 

(E is the unit matrix) and mik (a, p) are coupling coefficients determined from the 
characteristic equation. 

The six linearly independent solutions of system ~(2.1) can be obtained numerically by 
the Runge-Kutta, Adams, etc. methods for fixed values of the parameters a, fl. We assume 
these solutions with the initial cpnditions y,,(l) (a, fi, 0)= 61X to be constructed and have 
the form 

Y!? = i$l cl (a, B) yi? (a, B, x0), k = %2, - - . ,6 (2.5) 

The unknowns ei (a, b) (i = 1,2, ..9) taking part in the representations (2.3) and (2.5) 
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are found when the boundary conditions (2.2) satisfy (2.3) and (2.5). After using the limit 
absorption principle /l, 7/ and the inverse Fourier transformation, we obtain 

k(') (s, t, I~) = s 1 I@‘@, p, cz~~)e-~(~+~~)dczd/3 
r, r’r 

(“.I!) 

The contours rr and I'* are selected in conformity with the limit absorption principle 
/I, 2/ and circumvent the singularities of the matrix function K(a, fJ, x,) in a special 
manner. The right-hand side of the first equality in (2.6) determines the displacement 
vector of an arbitrary point of the layer 0 -s 13 < IL Irr I, I x2 I< 00 (i = 1) or half-space 

532 A, 1x1 It Ix2 IC mJ (i = 2). 

3. Assuming xQ = 0 in (2.6) and considering the stamp displacement U(r) (x,, x2, 0) = 
u" (% XP) to be known, we arrive at a system of integral equations in the unknown contact 
stress distribution vector-function 

k" (s, t) = k (s, t, 0) = l s K”(a, p) e-i@+P*) da @ 

r, r* 

(3.2) 

The matrix function K’(a, /3) = K(l)(a, fi, 0) has a representation characteristic for 
dynamic contact problems of elasticity theory /l, 2/ 

a2M + pzN @(M-N) iaS 

K"(a,fJ)= afi(M- N) aziV + @rM ipT 

iaS $T R 
(3.3) 

with elements M, N, S, T, R, dependent on the parameters u = 1/a" + p", of frequency w, 
and the kind of dependence of the elastic parameters and the initial state of stress of the 
layer on the coordinates. The functions M, N, S, T and R can be represented in analytic 
form only in special cases of the dependences of the parameters W), p(r), p(r), as well as 

a;$' on z8 (for instance, h(l) = h,(WS, p(l) = yO(r)eVX., p(l) = p,(r)eYX~, oi)_?) = ukkeVXa or analogous) 
allowing of an analytic solution of system (2.1) for i = 1. 

In the general case the functions M,N, S, T and R can only be obtained numerically, 
which makes an investigation of their properties difficult, a knowledge of which is needed 
for the subsequent analysis and construction of the solution of the integral equation. 
Certain properties of these functions (evenness and meromorphicity) and established from 
the form of the analytic dependences of the coefficients of system (2.1) on the parameters 
CT and p. By virtue of the homogeneity of the half-space, the branch points are,determined 
fairly easily and, therefore, the domain of analyticity of the function as well. The 
investigation of their asymptotic behaviour as a,B-C-J is important. 

Following /7/, we reduce system (2.1) to a system of differential equations with a 
small parameter in the highest derivative. An investigation of this system enables us to 
write a representation of the function-elements of the matrix K0 for &=1/m in the 
form (m,n,r, t,? are constant coefficients) 

M = mu-8 + 0 (u-s), N = II& + 0 (IA-~) 

R = ru-’ + 0 (u-s), S = BU-1 + 0 (u-s), T = ts+ + 0 (0) (3.4) 

Further study of the properties of the elements of the matrix function Ke is possible 
only when the specific parameters of the inhomogeneity of the medium are given and utilizing 
numerical methods. In particular, a detailed analysis of the distribution of the zeros and 
poles of the elements of K*, taking(3.4) into account enables us to approximate the matrix 
function K0 by a polynomial function with all the most important properties conserved. 
Furthermore, by using the method of approximate factorization of the functions and matrix- 
functions /l, 2/ a solution can be constructed for the system of integral Eqs.(3.1) and the 
influence of the system parameters of an inhomogeneous layer-homogeneous prestressed half- 
space can be investigated in a wave field on the surface of the medium. 

Certain characteristics of the wave field, particularly the phase characteristics of 
the surface wave velocity can be investigated by analysing the properties of the kernel of 
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the integral operator of system (3.1). 
Without loss of generality, we set 

p(a) 5 k,po, h@) = k,h,, p(a) =+ k,p, 

We furthermore assume that the initial stresses in the layer are due to the effect of 
gravity 

(3.6) 
(g is the acceleration due to gravity): The-constant coefficients 8, y1 6, kl, 4, ks in 
(3.5) and (3.6), enable the properties of the medium to be varied over a wide range. 

Numerical analysis showed that for Ir, = k,= K> 2 over a fairly wide range of 
variation of the parameters 8, y, G,the elements of the matrix-functionK"have a denumerable set 
of zeros and poles when they alternate strictly for the elements M(u)and R (@For fixed o., 
the zeros and poles lie between V,Cl) and V,(a) (the transverse velocities in the layer 

and the half-space, respectively). 
Graphs of the phase velocities of the surface elastic waves Vi (xn) (i is the number of 

the surface wave mode, xg is the generalized frequency parameter % = ~~(P~~*~', are 
presented in Figs.1 and 2 for different K (curves 1-5 correspond to K=f,10, 50, 100, 500) 
and 8 = y = 0, a,,'(~) = O(j = 1,3). As K increases the phase velocity of each mode increases 
while the number of modes at a fixed frequency decreased. Each mode of vibration exists for 
x2 > xzi. The frequency xSi is called the boundary frequency of the i-th mode /lo/. 

1 

Fig.1 Fig.2 

I 2 

Fig.3 Fig.4 
As xg+oo the phase velocities decrease, their value v* -+ V8(1) for all K. For 

KS1 a range of variation of x a (Fig.2) is observed in which the phase velocities 
increase as the frequency increases, poles occur that do not alternate with zeros associated 
with the appearance of a backward wave. The dispersion properties of the problem,become 
analogous to the problem of stamp vibrations on a layer which adheres rigidly to a non- 
deformable base. 

A chance in the barameters of the laver inhomoaeneitv 6. 6. Y influence the surface 
field differently. Graphs of Vi@,) are presented in Fig:3 for'6'=,0, 2, 3 (y = 0 = 0, K = 500) 
(the solid, dashed, and dash-dot lines, respectively; the numbers 1 and 2 denote the first 
and second modes of vibration). As 6 increases the boundary frequency xl; of the i-th 
mode decreases. As the frequency (the parameter xn) increases, the phase velocities 
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decrease more rapidly the greater the parameter 6, and the number of waves themselves (modes) 

at a fixed frequency increases. 

4. To illustrate the method described above for investigating the influence of the 

parameters of an inhomogeneous medium on a wave field, we will consider the problem of the 
vibrations of a rigid stamp occupying a strip )qj<a, 1z21<= in planform as an example. 
We assume there is no friction in the contact domain (to shorten the calculations), i.e. 

(4.1) 

Within the framework of these assumptions we must consider the pLane boundary value 
Problem (1.6) about wave field excitation in an inhomogeneous medium with the difference 
that the subscripts k,o in (1.6) and (1.7) take the values 1 and 3. Using the Fourier 
transform in 2, (a is the transformation parameter) we can reduce Problem (1.6) to the 
form (2.1) and (2.2) without special difficulties, with the vectors 

and the matrices Mci) (a, z,) (i = 1, 2) of dimensions 4x4, and WC (a, +.,) and B(l) (a, .r3) of 

dimensions 8x4 and 4x2, respectively. 
We will represent the solution for the half-space (by analogy with (2.3)) in the form 

(4.2) 

D, = A,As, D, = &A, + &AI.+ CZ~A,~, D, = S,S, 

Al = b$ , Aa = b$), As = a@) + 23,(“) A_ z A@) + &’ Y 0 1.J 

SI = p%a - A.&, S, = pw2 - A& 

5, [Dlfl,* + A& + aaA6*ll(S1A,), ml1 = 1, ; = 1, 2 J7$=-- 

(4.3) 

(4.6) 

Assuming linearly independent solutions for the layer (i = 1) constructed (there are 
four in the plane case and they can be obtained numerically for the initial conditions 
u(kl(a,O)=6fi) and having the form 

k=1,2,3,4 

we arrive at a system of six equations to determine ck (a) (k = 1, 2, ., 6) 

jj, AXjcj (4 = T, (a) 

T, = T, = T, = T, = T.3 = 0, T, = Q* (a) 
A,, = b$ (0), A,, = A,, = A,, = A,# = A,, = A,, = A,, = A26 = 0 

AI, = cdl) (0), 31 A m, = Y,,fi, (1) (a. h), m = 3,4; i = 1, 2,3,/t 

Abi = b$) (h) y$’ (a, h) -+- a$:’ (h) I/$ (a, k) 

Agi = (1”’ (h) $- Z$‘) (h)) y;;’ (a, h) - a%(” (h) y$’ (a, h), i = I, 2, 3, 4 
A, zz -c-"I", & = -+@', .A,,, zz _ m12e-+ 

Ale = - mae -0,h , A,, = - (a$+,~- b,, @&) c-%h 

Aoe = - (c~.$)rn~~ - b&) Co2” 

Aa = - [(&‘*‘+ 2y@:)mU0, + ,%'*'] c-O'~, & = _ [(J,@) + 2/~@)) ,Q~s~ + c$}.(~)].-~*" 

(4.5) 

(4.6) 

14.7) 

It is here taken into account that the components VI2 and 1', 2 are expressed in 
a linear manner in terms of the components UP) and UJZ' by virtue of (4.2). 

The solution of system (4.61 has the form 

CL (a) = G@)&dA (a) (4.8) 

where &, are the elements of the tK%triX ConsiStiW of the cofactors of the elements Ai] of 
the matrix A. 

Taking (4.2), (4.5) and (4.8) into account, we can represent the displacement vector of 



241 

an arbitrary point of the medium in the form 

kc”) (8, 5) = 5 R(+) (a, zs) eTicra da 
r 

In the case of a contact problem it is necessary to set f-f,+=0 in (4.9). 
Assuming UP' (+I 0) to be a known function we obtain an integral equation in the unknown 

contact stress distribution functions q(l) &) with the kernel R(l)(a,O)== AO (a). 
The solution of this integral equation is constructed by the approximate factorization 

method. To this end we approximate A0 (a) by the function 

(4.10) 

Here r(r) is a constant occurring in (3.4), zk (k= i,2,..., n,), 6k (k =‘i, 2,...,& are 
real zeros and poles R (a); B, =k (k = nx -i- 1, . . ., N), &, (k = ml 4 f, . . ., N) are approximation par- 
ameters that are determined from the condition for best approximation of Aa W by the 
functions R*(a) on the real axis. 

The representation of the functions q(l)(s,), 1 =I 1 c (I, dl) (tl) when using an approximation 
of the form (4.10) is described in the literature (/l, 2, 5, 7, ll/, say) and is not presented 
here. 

Graphs of the function Reg(~,)ly, are shown in Fig.4 for different values of k,=k,= K 

and 6 for 8=y==O in (3.5). The solid lines represent Req(s)& for the case $jij= O(j= 

I,9 fa homogeneous layer) and K = 1,2,~,iO,i~,~ (denoted by the numbers i,Z,...,Q It 
is seen that as K increases the amplitude to the contact stresses increases, where it is 
transformed from parabolic (K= 1) to a form characteristic for static problems for S>fi. 
This can be explained by the fact that there are no real zeros .and poles at the given 
frequency xp= 0.8 for K>l. i.e., the problem becomes quasistatic. Contact stresses 
for different values of 6 are represented by the dashed lines. 

The numbers 7 and 8 denote graphs of Req(zl)/PO for 6=i,2,K=i, and Y=0=0. As 
6 increases the amplitude of the stress drops, and the diagram is transformed from 
parabolic into saddle-shaped, and the stress oscillations are magnified under the stamp. 
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